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Notation

A, B, C - constants

a - modulus of I., defined by equation (10)

c - chord length

,P - length of cavity in -plane

,t - length of cavity in z-plane
c

c - pressure coefficient, equation (24)

C - lift coefficient, equation (24a)L

K - cavitation number, equatiun (1)

p - pressure

t - semi-circle plane

u - velocity component in x-direction

v - velocity component in y-direction

V - modulus of velocity vector

w - u-iv, complex velocity function

x, y - coordinates of physical plane

z - x+iy

- flow angle with respect to chord

- stagger angle

S- defined by equation (10)

W'l,nI - defined by equation (18c)

Y2,n 2 - defined by equation (19c)

S- transformation plane

C, - solidity c/2ir

- denotes upstream conditions



()2 - denotes downstream conditions

()M - mean conditions

- perturbation quantities

('l - complex conjugate quantity

I.



Flow Past a Partially Cavitating Cascade of Flat Plate

Hydrofoils

1. Introduction

This report deals with the non-viscous, steady cavitating

flow through a cascade of flat plate hydrofoils in two dimensions.

The usual assumptions of incompressibility and irrotationality are

made.

The motivation for this investigation is the present day

interest in the high speed performance 3f lifting surfaces, such as

in hydroplane boats and the behavior of propellors operating under

cavitating conditions. A further area of interest is that of turbo-

machinery. The demand for smaller, more compact pumps and

turbines, for any given performance, necessitates operation at

higher speeds giving rise to cavitation conditions. Hence the

problem at hand is not only of theoretical interest but is of

practical importance.

The problem of the fully wetted cascade has been ex-

tensively treated, and can be found, for example, in a paper of

Garrickkl)* and in standard texts such as Robinson and Laurmann.(Z)

The case of cavitating flow through a cascade of flat plates with

infinitely long cavities was first treated by Betz and Petersohn

using the classical hodograph method for free streamline flow

attributed to Helmholtz.

Numbers in parentheses refer to the references at the end of the
text.
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In dealing with cavitating cascade flows, hodograph

methods became somewhat unwieldy, and this has led to the use of

linearized methods for solving these problems. This method, first

used by Tulin(3) assumes that the cavity-body system forms a slender

body and that a perturbation technique similar to that used in thin

airfoil theory may be used. The use of the linearized method leads

to the solution of a mixed boundary value problem. The use and

application of this method is well illustrated by Parkin.(4)

The first published paper on linearized cavity flows through

cascades, was by Cohen and Sutherland.(5) They dealt with the

problem of arbitrarily shaped hydrofoils with finite cavities, longer

than the chord length. However, only results for the flat plate are

presented in their paper. Subsequently, Acosta and Hollander(6) dealt

with the partial cavitation in a cascade of semi-infinite flat plates.

This problem was recently treated using a hodograph method by

Stripling and Acosta but no formal comparison was made between

the two methods. Acosta(8) also considered the case of the fully

choked cascade of circular arc hydrofoils. . comparison was made

with the results of the linearized method with those obtained by Betz

and Petersohn: generally, a good agreement was found.

In the region where the cavity is less than the chord length,

no results have been published to the knowledge of the author, for

cascade flows. This case would provide a complete picture as to the

behavior of these flows over the entire range from the fully wetted to

the fully choked conditions.
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II. Formulation of Problem

As illustrated in Figure 1, the cascade consists of an

infinite array of flate plate hydrofoils having a stagger angle # . The

chord length of each blade is c and the spacing of the hydrofoils in

the direction of the stagger angle, is taken as 2w. Hence the solidity,

c/Zl.

The flow approaches the cascade with velocity VI at an

angle of attack i.1* The flow is turned by the cascade so that far

downstream the flow velocity V2 is at an angle d-2 to the blade chord.

The cavities spring from the leading edge and terminate on the upper

surface of each hydrofoil. In keeping with the linearized theory the

thickness of the cavity is assumed small compared with the blade

spacing Zw. The boundary conditions on the free streamline of the

cavity are then applied along the real axis, as are the conditions on

the wetted surface of the hydrofoils.

The velocity field is now considered as a perturbation about

the velocity V. VAlthough, in the neighborhood of the cascade a more

natural characteristic velocity would bc the vector mean velocity Vmp

it is found more convenient to adopt VV, as Vm is undetermined a priori,

since it depends on V In the calculation of the lift coefficient, however,

the angle which the vector mean Vm makes with the blades, viz., am'

is used so as to bring it in line with fully wetted cascade flows.

The governing parameter in cavity flows is the cavitation

number K defined as

K =- C (1)

1
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where p, is the pressure at upstream infinity and pc is the cavity

pressure, which is a constant. Since the velocity is defined at any

point as

V = (u,v) = (VI+ u', v') (2)

where u', v' are perturbation components assumed small, compared to V1

we obtain by the use of Bernoulli's equation

V
2

V 12

I2
However, neglecting the squares of u', v' compared with V1 2. thisa

becomes Zu
c

KV

KV

On the wetted portion of the hydrofoils, v=O, i.e., there is no flow

through the blades. A further condition that has to be met, is the

closure condition which requires that the cavity-body system form a

closed body. This condition can be expressed as

Sdy =O (3)

body

The above conditions, together with the -requirement that the

velocity be finite at the trailing edge, enable a unique solution for the

problem to be determined.

Hence the conditions to be satisfied are:

(a) v = 0 on the wetted portion of hydrofoil

K
(b) uc= VI(l+ f ) on the cavity

(c) V = VIe 1 at upstream infinity
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(d) the closure condition, viz.,

Sdy=0

body

(e) V is finite at the trailing edge.

These conditions are sufficient to determine the velocity

function at every point including the downstream conditions where
-ic'Vd 2V = V e

Before proceeding to solve the boundary value problem we

derive the following simple relations from continuity considerations.

The velocity triangle is as follows

VI

Vm

From this diagram we obtain

"V sin( +'%) = i sin(c I+/3 + Vzsin(a z+P)

"Vmcos(4M+ I) VlCOS(l.I+P) = V2 cos(Gt 2 +p) (4)

from which we get

tan(t+ 1 S) = [ [tan(a+ i) + tan(at2 +(S)] (5)
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III. Transformation Functions

Consider the transformation function

I g

7-T

This function maps the multiple-connected region in the

z-plane onto the S -plane, as shown in Figures 2 and 3. The function

has branch points at 11 and 12 in the 3 -plane, corresponding to

the points z =Too, respectively. There is a branch cut between 31

and S2. Hence when either point is encircled once, the argument

of z changes by *2ei(w/ 2$). The sign depends on whether the

branch point is encircled clockwise or counter-clockwise. Each

Riemann sheet of the S -plane corresponds to the flow region over

a different hydrofoil. Since the flow is periodic, however, the function

is continuous across the cut.

The point S =0 corresponds to the point z=O, as seen from

equation (6). Further, when S is real, z must also be real, as it

consists of the sum of complex conjugates. When S tends to infinity,

we have

Z-e i n 2e " SZ (7)

which is a real number.

Since ; =0 is a singular point of the transformation,

dz/d5= O at S =0, i.e.,
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•2 +ei} { 02  (8)

If we require that the trailing edge of the hydrofoil map into the point

at infinity, then we must have dz/d;=O at o= co. However,

dz1
must - 0 as - at -- 4po

This condition therefore gives

e'iS•- •+ e itsl-• 0 9

Now let i .1

iOc i(V-re 2= re

2 = 2  -re

so that

01 + 0 2 '(11" f)

With this notation, equations (8) and (9) reduce to

r cos( C1)
1- (8a)

r2 coo(. p-•Z
cos(~-pf 2 )

r I Cos(C •- + f2)- = -(9a)rZ 2 os Ir- -fl)



-8-

For these two equations to be compatible, we take I,= f2a f ihence

0 1+ 0 2 if

0 1- 0 2 =-2f

With these values, either equation (8a) or (9a) provides an equation

for rI/r 2 . Since the ratio of the moduli is the unknown, we are free

to fix one of the moduli arbitrarily. Hence, we let I X I rI =1 and

S2 = r 2 = a, where a > 1. Then from either (8a) or (9a), we get

tan a-l tan (10)

The transformation is now completely specified.

Since the trailing edge corresponds to the point at infinity,

we get from equation (7)

c = 2cos$ Insa + 41 @in (01)

and hence the solidity r is given by

.:1cos/$ Ina + . sinp (12)

The point z = . corresponding to the end of the cavity isc

mapped into a point on the positive real axis in the 9 -plane, = L.

Thus, using the above notation together with equation (6), we get

4= coo/%4 Itn-J + 2sino~ Y (13)

where 4 2
n = 41+ 1 .Zsin

n2 =1+ 2/a2 + 2 A sin2 a

Iy = -I (a-l)IcosoI+ t sin 2

a-(a-l),jsin f + 2 cos 2
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We now transform the upper half s-plane into the half circle t-plane,

Figure 4. To achieve this, we use the well known Joukowski transfor-

mation in the following form

£I

4 t

In the t-plane the semi unit circle represents the constant

press .re cavity surface and the real axis outside the unit circle

represents the wetted portions of the hydrofoil. The leading edge is

at the point t = -1, and the trailing edge at t = co.

The t-plane is used, since the velocity function for the given

boundary conditions shown in Figure 4 can be written down by inspection.

IV. Solution of the Boundary Value Problem

The velocity function

w =u-iv = A- + +C (15)

where A. B. and C are real constants, satisfies the boundary conditions

for suitable values of A, B and C. This function corresponds to sources

(or sinks) placed at the leading edge and at the end of the cavity. We

now apply conditions (a) - (d) from page 4.

On the cavity, viz., t=e ig, (uc. vc) = (V1+ uc ',Vc') , therefore

U -iv A -itan 0_J i[ cot 0 i+ c

hence
.A-B

uc T + C

but K
Uc V 1(1 + --
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thus

VI(l + ) -B- C (16)

Condition (a) is satisfied by equation (15) since when t is real,

v=0. Further, condition (e) is obviously satisfied.

To apply the remaining conditions, it is more convenient to

transform equation (15) back into the S-plane, by use of the transfor-

mation function (14). Inverting equation (14) we get

The positive root is taken because t tends to infinity as 3 tends to

infinity. On substitution of this expression into equation (15), one obtains

w()A+ C+Bf '3jiT (17)

Now -iGtw(•)= vle

Applying this condition to equation (17) and separating the resulting

expression into real and imaginary parts, gives

Vlsin aL = An (18b)

where -1 'cos
'I = tan' 1 -

(18c)
4 2

nl =+ 2+e-Z1sin

Now, applying the condition

w{52) = V 2e 2
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we get

V2sin 2 =L -Z v + An 2  (19b)

where

=t2 tan- &Cos?a-+ _jin-

n24 + A2 /a 2 + 2-/a sin (19c)

We finally have the closure condition, viz.,

b)dy=O

body
which reduces to

Im Pt w(z)dz = 0
body

Since w(z) is an analytic function in the flow region around

the hydrofoils, we can deform the contour in the a-plane to the contour

rf shown in Figure 5. Then, symbolically we have

w =~d + + +liof + lim, f wdz=O0
r' bodyH D I el 2

The contributions from the other parts of the contour cancel due to the

periodicity of w(z), while the contributions from the last two integrals

in the above expression, are zero. Now
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A

w(z)dz = ZwVIle 
1

w(z)dz -2wV 2 ie( 2

. m. In pt4. w(z)dz 2 V con(S +A).V coM(OL 0
body

hence

V = V cos(CL2 +,S) (20)

This is the same result as already obtained by continuity

considerations in equation (4). Finally we have the following equations

to solve:

A-B K
+C V V(I + -r )

VIcoS' a CL + C + -AnI
I nB

Vlsin a sin = " + Anl

V cos + A-B C o+ sVco n B n•

SY. 2

V sinl at Bi l + Ant
2 2 n Lz

V Icoo(( I +f) = V 2 cos(OL2 +13)

After considerable manipulation these equations reduce to the following
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K F(l+T-) cosnI+5-7 sin 1 (21)

tan 2d E (22)
D(l + T)

V~ ~ + ESin¶ 
(3

V sin in
2 E in

where
[n n n2 1  '1 Y t

sin - 2 - n J sin T sin Y2 tan

D inin - y1 co sin•€

E sinY2 -[n+ -] cos sin n[, - .Tj sin sin tan

=[l Z]CO YrlCO YZ+"in t n 1 [ _coI sin -y tan•

F ~ ~ _n n.]i y.A. coI y.s- + i[~tnS n[], Yjco Y2sn~.t

G =sin tan CO[ -T COG1 sin -_- CoT tan•g

Equation (21) gives us a relation between the cavitation number and the

cavity length c " If we consider the limit as the solidity tends to

infinity, this equation reduces to the expression obtained by Acosta

and Hollander,(6) for the case of semi-infinite flat plates. Further

details are given in Appendix 1.

We now calculate the lift force acting on the hydrofoil. As

mentioned previously, we will here adopt a slightly different per-

turbation procedure, so that a comparison may be made with the fully

wetted case. We use the vector mean velocity Vm as reference velocity.

The element of force acting on the blade is
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dF = (p-p m)dx

F - • (P-Pm)dX

body

Defining the pressure coefficient c as
P

c p (24)
I m

and the lift coefficient as

F (Z4a)
L I TZr Vm c

we obtain

CL cdx

body

Using Bernoulli's equation this becomes

CL -1 +-L (u-Vm)dx

body m

which reduces to

CL Re pt wlz)dz
In body

on the body. Carrying out the indicated procedure in an identical

way as previously performed for the closure condition we obtain

CL = '2 [2Vlin(°1l+ VZ'in(ot +i))

By the use of equations (5), (20) and (23). we can eliminate aL

and O'2 in the above expression, and deduce the following:

CL 4 IL •- -In { (2)
C= F -o/ min *L(Zm



-15-

As D, E are functions of t, the cavity length in the I -plane, this

expression can be used to obtain the limiting case for the fully wetted

cascade, i.e., when .E tends to zero. This is carried out in Appendix

II. The result reduces to that of the well known, fully wetted solution.

viz. ,
CL = 41 c-l sin am (26)L ( cosp La+ 1J m

A further limiting assumption in the linearized theory is that the angle

of attack C, is small. If second order powers of O( are neglected,

equations (21), (ZZ), (23), and (24) reduce to

K F (Zia)

E (22a)
' G + .D (l+ K( )

E I
V/V = (23a)

° 112 1D

CL = 4 (25a)

From these equations, the results shown in Figures 6 - 28 were

obtained.

V. Computational Procedure

The numerical calculations were conducted on a computer

and the general method of computation is outlined below.

For a given cascade geometry, viz., 0" and 1 , the value

of a and I were determined by the simultaneous numerical solution

of equations (10) and (12). With these values, the functions D. E, F,

and G were evaluated, for values of L , ranging from zero to
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approximately two hundred; this latter figure giving a value of 0.99

for . Ic. The ratio ,c /c can be found from equation (13). Having

determined these quantities, the values of K/2,I, 020 V2 /VI and CL

are found for various angles of attack &L V The process is repeated

for various stagger angles a , holding a- constant. This final

parameter 0- is then varied and the above procedure repeated. The

range of values considered is given below in Table 1.

Parameter Range

Solidity 0.25 to 1. 25

Stagger angle -750 to +750

Angle of attack 10 to 60

Table 1

The Fortran program used in the computation of the results

is given in Appendix III. This program is incorporated so that, if

required, the data may be extended for other values of the parameters.

The data cards for the program have a format as given by

statements 14 and 15. Statements 133 through 100 give the numerical

method adopted for the simultaneous solution of equations (10) and

(12) to obtain a and I. The remainder of the program deals with

the evaluation of the required data.

It should be noted that for the case of 13 = 0, the numerical

solution adopted for the solution of equations (10) and (12) breaks down,

and the program has to be slightly modified to accommodate this case.

For PS =0, the above equations can be solved explicitly, hence state-

ments 133 through 100 may be omitted. The remainder of the program

is essentially the same though somewhat simplified.



-17-

VI. Discussion of Pesults

Figures 6 - 10 illustrate tie relation between the cavity

length and the cavitation number, for various geometries. The case

of the isolated, partially cavitating flat plate is also shown on each

graph. The values for this came were obtained from reference (9).

It is of interest to note that a feature of the linearized theory is the

fact that after a certain value of Pc/c the theory predicts two different

cavity lengths for each cavitation number. This is apparent from

figures 6 - 10. Since, in any case, the linearized assumption that the

cavity-hydrofoil system forms a slender body would not be met for

large values of Ac/c, it is assumed that the validity of the theory

only holds good for values of I / c/ - /c minimum.

This behavior is to be expected due to the cavity model

chosen, which places a singularity at the end of the cavity. However,

comparing the results with that of the isolated hydrofoil, we see that

this range of validity is increased in the case of the cascade. It would

seem that the cascade effect has the property of reducing the strength

of the singular behavior at the cavity end. This is further illustrated

by the fact that as the solidity increases the range is extended, until

at solidities greater than 0.75, a single valued function is obtained

over almost the entire chord length for positive values of stagger angle.

In the case of negative stagger angles, corresponding to the case of a

turbine, as distinct from positive values of which correspond to a

pump, we see that there is still a region where the function is double

valued. Physically, this is to be expected, since the effect of the

neighboring blades is now no longer as effective near the cavity end.
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It is seen that there is a large difference between the cavity

geometry in cascade, compared with that of the isolated case, even for

small solidities. However, this comparison is not entirely justified

as the value of K/26L is based on the upstream angle of incidence. In

the case of the cascade, a more natural angle to adopt is that of the

mean velocity vector Vm

Further, the curves at first glance seem to indicate that

the cavity length for a given cavitation nimber at negative stagger

angles is less than that of an isolated hydrofoil, even at low solidity.

This surprising effect, however, is due once again to the choice of

the upstream conditions as a reference. If the mean conditions are

taken as reference, the curves for negative stagger angles will be

raised above that for the isolated case and those corresponding to

positive stagger angles remain below it as would be expected. If the

curves are based on this angle, therefore, a better comparison ii

achieved. This is clearly illustrated in Figures II and 12 where ',e

cavitation number is referred to the mean angle .
m

There is still a significant difference for all values of /3

having solidities of 0.5 and greater. It therefore seems that the

cascade effect is not very pronounced for solidities up to 0. 5 provided

the stagger angle is within the range -300 to +600.

Figures 13 and 14 illustrate a further representation. Here

the value of K /20( is plotted against I /c, where K is defined as

m m c mn

K Pm "Pc
K I -m "Pv
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which to first order, reduces to

Km = K + (l+K)(I- o 2 )tan

with the help of Bernoulli's equation.

It is seen from these graphs, that for low solidity the

curves lie very close to that of the isolated case, for all values of /2 .

This representation, however, indicates the opposite effect to that

using K/2ftI. viz., that cavity lengths, for constant cavitation number,

are longer for positive stagger angles than the isolated hydrofoil,

even at low solidity. Consequently, it seems that the parameter

K/2ZO is the most natural one to use.

A disadvantage of using these alternative forms is the fact

that they depend on OL1V whereas the value of K/20L I is independent of

the angle of attack X 1 and thus facilitates presentation immensely.

Figures 15 to 22 show the variation of force coefficient with

cavitation number for varying cascade geometry. It is significant

that the force coefficient is little changed over the range -30'C P < +300

for a constant solidity. Since the linearized theory breaks down for

large stagger angles, this effect is to be expected. The breakdown of

the linearized theory is due largely to the fact that at large stagger

angles the assumption that the cavity thickness is small compared with

blade spacing can no longer be expected to hold, except for very small

angles of attack. As shown in the curve, the force coefficient for the

isolated hydrofoil is approached as the solidity decreases. However,

once again, we see that for solidities of 0. 5 and larger, the cascade

effect is prominent.
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The curves as plotted, are terminated at the points where

/ /c is a minimum. Here again, the point is illustrated that the
C

mean conditions seem to be the natural choice for reference.

In the remaining curves, Figures 23 to 28, the behavior

of the downstream conditions is illustrated. Here again, the curves

are terminated at the point of minimum . /c. It may be pointed out

that at Pg =00 the theory gives V2 /V1 as unity, but shows that a 2 is

still variable and not equal to 09 " This apparently is a violation of

the continuity equation which would necessitate I= Of ' This

discrepancy is due to the linearization procedure which neglects

quadratic terms.

VII. Conclusion

A linearized theory has been presented for the partial

cavitation in a cascade of flat plates. The results have been presented

in such a way that they may be useful as a guide in the design of

turbo-machines and other applications. From the results, it is

possible to determine the cavity length, lift coefficient and downstream

conditions for any desired cavitation condition for a given specific

cascade geometry and initial upstream conditions.

The limitations of the theory are stressed and it is shown

that the cascade effect diminishes the singular behavior at the end of

the cavity. In the case of the isolated foil the theory holds good up to

a ratio of cavity leng'h to chord length of approximately 0.74,

whereas in the cascade flow this ratio varies from about 0. 8 for small

solidities up to 0.95 for larger solidities.
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It is further shown that for solidities of 0. 5 and over, the

cascade effect is appreciable and cascade interference effects cannot

be neglected in this range. However, for solidities smaller than 0.5

the cascade effect is relatively small and the isolated case may be

used as a fairly good approximation provided that the mean conditions

are taken as reference quantities.
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Appendix I

From equations (10) and (12) we get

a-i
tan{ = • tan

T =!cospI na+-2f sinps

hence
a- Ir -2ftan

a e •cOsp

for
a- .. D a --w OD, j-

hence i1/4
nl.[+ t 2 -2Isin,3]

tcos's
tan ' I " -"1o sir•n 1

tn2 -. 0

Y2

Therefore we get that

sin YI = -•

n1

cos 1
n1

and V/ n-l+l cooS2

sin 1 T -1

N1 • n+l-•.jintS

Substituting in (21) gives
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K (n1
2 -1) In 2 +-sin 1  + sin

(l )-Cos ofi+ sin ot I
(n()c +) ýnl-1+)sin/4, - -7i2 coso

If we now change notation to that of Acosta and Hollander, we get

and we further replace

K
(1+--T- ) by

then

cor1 =Cos - sin (1-2) V 2+l-bsinl - V'b sin I"

(1+12) Vlz -+b ain' - V b cos Y

After some manipulation, this reduces to

bcos ~ ~ " (- ,co -•Z' V I_ I2 sbin Y
b con )Cossin I(

( )"K = coact - sinat

-1+b sin Y (l+ t_ 2 _cos_ _ -__ + 1_ -bsinif _Cos _

which is the expression given by Acosta and Hollander.

Further, we see from equation (22) that since E -- 0 as

a "-,oo we get OL- a 0 for all 0I
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.Appendix II

In the expressions for D and E we expand each term in

powers of , for small L, retaining powers up to and including 0( 3

1 . 1 1 2 2~ 4

_ n_ -(4+ !)sin f1+ (1 -sin

n 2 1 2 a3

a

sin cosqt+ sine cosql 2  c -sin 2 )cos t 3 + 0(1 4 )

si Y2. coo si~o 4 ~st 2 2 -sin 2 f ) con.A91 3 + 0qt4 )
a a

YI Y¢2 C.os I £2sin#Rcs. 2 co o 2 C08 -- 304sin'-y co •- • .1 + o t +3(sin Zcoso + 0(14

i 2l . Y1 c 2 (I- L siricos2 f 3 4
sin T sin-., 4a t a 4a + 0(4

'r'I . 2  coo sinco I 2 Cosa. 3co.s in fcoo13+(,04S~cos -Tsin -y , -- - - , _( r -•-L" • a- 3 (4
ca 2a 2  8a a

Utilizing these expressions we obtain

D = (.+ Lj+ -_)s in 2 cos + 1 1 ))cos 3 + (1+ sin)cos 2.tan1 3

8a 8a

+ 0(o14)

~FL ~ 1 2 1 1 3 1 1 21 3
-I 1T 73 1 cost+( -- _•)cos f +(l+-) .in~coso, tannij

4a Sa 8a a 4" '

+ 0(P4)

hence
+ 8La) sin 2 fCos J+ (I I8 co31a ncs a

-"a I- 1 -1•si~ 1oq (•-=-)3• +1+ 1) -F( + T. + I sinfcoo2 tan 3
8a 8a

+ 0()
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a-l
Now substituting for tan p j-i tan I in above, gives

D,~ a + 0(j) as .-. 0

thus
•' 1 i r aa-il"

C r- c-o - sin sxno as 0

which is the classical fully wetted cascade flow result. Now, when

( = 0, a = e then

CL = Z~r tanh(w / 2) sin a
L (rw/2) in

for the isolated hydrofoil C"-- 0 this reduces to

C = 2w onL m
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.Appendix III

We present here the Fortran Source Program as used in

the computation of the results presented in this report. The notation

used is self evident from the program.



DIM~t4S1II..o. ;:L(plgjoo) tEL(ZNf5OO,API500),AN(5OO)t
XbitfbCO),v'4tu0G),CP(500),CN(S(,Oo)DP(500),DNI500)

14 FUMMArf4!'j,FIL,.B)
L5 FQOt'AI('d [.,.9)
16 F-UKMAI(6L16.b)
20 FORMATEUH S!GMA-EI6.8.?H PFTA=E16.8,

X3H AaE16.8,3H PIII=Ll6.13,7I- ALPHIaEIz6.Fl)

22 FORIMAU46X, IHL,$X, HK,7AWkiK/2ALPHl,6X,4HALF2,
X9AtcAALFc/1,6X,51IV2/Vl,'DA,,?HCL,6At9H0CL/DALFM,
X~Xt2HLC,4X,'d-1LC/C)

133 FuRmAT(LH ILl2.4 )
P'AMIFIA9,AL,62)=vil-W2*L06iF(A)

PLAC 14,NSIL;',NIIFrNAL9'4r1,CONSI
iRLALO 1%IS#l,?M,0S1G9bEro9nB:1 ALPHOtDALAOOAUtELODEL
S 1U6iA.zIGt4U
DOi 500') ISlGxl1,4SIG
fliCK=3.141!'426*SIGMA*.i.
R F IA a t IU
00 400- ic11,NtE

W3= SINF I'%Lt A) /CMlF(hE [A)
W2=0. 5118

rA-0AU

Y2=PAMIIF IA,W.3)

YIfi SFY3)), 1 A 6

50 IF(Y4-Cu,,St 3 CQ9, 100,55
55 A=A-0A

PAOD./1C;.
A-A4DA
G;U TU 40

60i A=AIDA
IP0 TO 4SC

100 PHIaYl
LzU
00 3000 IELz1,NEL
Fl=IELeIEL
[L=F1.0CL
Flz(LI.i-EL.E'L)
F2= C I +I( IL/A) ..2))
F 3x2*.EL*%INF( PHI)
ENP14zF -F S
ENP24uI 2.(F*I/A)
ENN14=F +F 3
EAN324rF2-(F 3/A)
HAPzENP14/,E4P24
HAN=L4NNL4/LiNN2's
F1xELoC!ISFIPHI 3.1A-i.)
F2=EL*EL.SINF( 2.*PHI)
F3=A+f1.FL*COSF12.*PHI 3



F43(A-1.)*L1eSINF(PI~H)
CIPHA*-([I +r2)/(rl-F4)

IF(PHI-O. VW310, 3010, 3020
3LIO1 G AMP a A AW ("OPHA)

GAMNx AT Atqr ( wiA)
~OTO 30,jo

3020) IF(6NIHA)3VJ1,3C,2l#3G2Z
3021 GAmN-A1IA'4F(GNHA)

GO TO 3Q281
3022" rIN-ATANFJ(tuNHA)-3.1415926
3U28 I FI JHA )30 1 v3C, 0,v30219
3029 Lal
3u31 IF(L)31.-IL# I313c40
3031 GAf4PsArA'lFI(JPHA)

GO IU 30s0
3040' IF(GgPHA)3C-4j,3L'421,3042
3U42 GAs4P=ATAb.FfGPI4IA)

GO 10 3uO
40j45 ;oAMPzArAr..Fkt;IHA)+3.141592ý6
305L, ELCP( IEI):CO)SF(?ETA)*L{)GF(HAP)-2.*SINF(IIETA)*GAMP

FL=SQ4RfIL 4P 14)
ENPl2StjRI FIFI)
FlzSQRIF(FNP?4)
FNP2=StRTF(F1)
FlzSQI(rF tE.qN14)
E.NNIzSQRTF(FI)
F i=SLRIF (LNWJ4)
EWaNI2-SQRTF (Fl)

F~zEL*cSI~F(r'q1I

TN2zFL/(A-F2)
FPi-l./SQRIF(l.+rPI*TPI)
FP,'=L./SolRir( I+TP2*TP2)
FN1=L*/SLURFFH1.4TNI*TNI)
FN2-l./Si.,RJFI .+rN2*TiN2)
SP1=AIISF( rl.FP1)
SP2=At3SF(tP~2*FP2)
SNI=VT.41FNI
SNi2=A1bSF ( t 4i2.FN2)
CPl~I-SV#Nr(FPl, (P1
CP2=FP2
CN1=F.Nl
CN2.=SIG:* (FN2,r2)
%lPHl=%QRTF(ti.¶*(1.-CPIfl
SPH2mSQP1FfC.i*(1.-CP2))
SNH1=S~lAr(L.5.( I.-CNI))

CPHI=SQRIF(.J.5.(1.CP1))
CPH?~z'JrwR Tfu.5i.(1.+GP2))
CNH1=SUTF:(O.ri*(I.+CNI))
CNH2=S~jmtF(O.5*( 1.4CN2))
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FPZzl*/FPIJ
FNIzENN I/F 4'142
FN2ZI ,IF:41

F2zFPI-F&'2

Fi=SPhl*%ePti2*F,2*FU

FSFr2*CPlllvCPHZ
AP(I IL[zf I'SvI*HCPh2-SPl-F3
SP( ILL)a'd'2-FlsSPH2*CPHl-F3
CP( 11L1=Fb4-SPI.Ft-FI.CPHI.SPII2.FO
DPI (IEL)-SVIJLeFiJ-F9-F IeSPtiI*CPH2.FO
FO=-FO

F 2= Fh1-F N?
F3xSNHI.S,'ol2oF &2.FC

AN( IEL )-F l*SNHI *CNH2-S~ql-F3
RNI IEL)=S'i2-FL*S'lH2*CNHl-F3
CN(ICL)=LSNlIFb)-Fl.CNHI.SNH2.Fn

3t.OU DNh( IEL ) SNi.*ru-F5-F 1.SMHL*1CNH2*Frf
AL PH =AL PHi
LMI 3500 ItAl-=LNAL
PRINT '.
PRINT 20,SIiUMA,tiETA,A,PHI ,ALPHI
PRINT 'i
PRINT 22
PRINT 5
rflu 3t5o ILL=19.J~L

EL=F I.DýL
CAPr~3=CP( ILl-i/AP(I EL)
CAPAz2. .ALi'IiI.CAPLI

RALPH 1)
ALPH21=ALP112/ALPt.l

FI=API EL)/HP(I I)
OCL=4..IFI-1.)/IIFl+l.)*SIGMA.COSF(lBETAfl
F2=ALPH1,I- IA
F4=S INF IF? I/C0SFfIF2)
F2=ALPH24MIETlA
F5=SINF (FZ) /C~iSF(F2)
F3=0.5*(F4+t5)
IF(F313l105o3ll0,3ll0

3105 ALPHM-ATANFIF3)-REl'A43. 1415926
GO TO 3115

311C, ALPIM=AIANF(F3)-IIETA
3115 CLL=OCL *AL.oilti

r i ELCIJ (I I L ) / (.f) ICK)
3150 PRI[NT 1(,FL .CAPA,CAPUALPH2,ALPH2L ,V2VI.,CLL,A)CL9

X[LrPI In i,l-l
PKI14T ')
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rl=-BEIA
F2s-PHI
PRINT 2C,S1~jl-A9FlqA,F2 ,ALPHI
PRINT 'I

PHI',4y 2?
PRINF 5
00) 3250 1LL=1,4EL
FlzILL*ILL

CA~rlzCNI IFL)/AA( IEL)
CAPA=Z..CAvUoALPlf I
ALPH2sI( Ii L)/MON( IEL ,A4( IE13.L.4CAPA.O.5)/

XtALPHIJ )
ALPH2 1=ALVH2/ALPHl
V2VIsdNlEIL)/(AN(IFL)%ALP'H21

F 2-ANI PH 1-tiNE IA L

F4=SINrF2IF) /CtJSF (F2)
Fte=ALPH2-tq. I
F5=S INF (F2) /CUSF ( F2)
F3=0.5.1F4.Fi)
IF(F3)3210. 3210,3205

3205 ALPHM=4IANF(F 3)tQETA-3.t4l5926
GO TU 21.

321U ALPI10- TANF (F 3 ) bE TA
3215 CLL=UCL*AL,'g4M

3250 PRINT 3ý),ELCo~APCAPO,ALPH2,ALPIlt21V2V1 ,CLLOCL,
XELCN(IEL)#Ft

)5OU ALPt4IUALPl-il*AL
.4000 6FrAut$FTA+0bET
5000 SIi&MAzSI(~tA.DSIG

CALL EXII



-31-

REFERENCES

1. Garrick, I. E., "On the Plane Potential Flow Past a Lattice of
Arbitrary Airfoils." NACA Report No. 788, 1944.

2. Robinson, A. and Laurmann, J. A., "Wing Theory". Cambridge
University Press, Cambridge, England. 1956.

3. Tulin, M.P., "Steady Two-Dimensional Cavity Flows About
Slender Bodies." David Tyler Model Basin Rep. 834, May 1953.

4. Parkin, B.R., "Linearized Theory of Cavity Flow in Two-
Dimensions." Rep. P-1745, Rand Corporation, Santa Monica,
California.

5. Cohen, H. and Sutherland, C. D., "Finite Cavity Cascade Flow."
Math. Rep. No. 14, Rensselaer Polytechnic Institute, Troy, New
York, April 1958.

6. A.costa, A.J. and Hollander, A., "Remarks on Cavitation in
Turbomachines." Rep. No. 79-3, Eng. Div., California Institute
of Technology, Pasadena, California, October 1959.

7. Stripling, L.B. and Acosta, A.J., "Cavitation in Turbo Pumps -
Part 1." Transactions of the ASME, Journal of Basic Engineering,
September 1962.

8. Acosta, A.J., "Cavitating Flow Past a Cascade of Circular Arc
Hydrofoils." Rep. No. E-79-2, Eng. Div., California Institute of
Technology, Pasadena, California, March 1950.

9. Acosta, A.J., "A Note on Partial Cavitation of Flat Plate Hydro-
foils. " Rep. No. E-19-9, Hydrodynamic Lab., California Institute
of Technology, Pasadena, California, October 1955.



2a,

HYDROFOIL

Fig. 1 Partially cavitating cascade of flat plates.

CAVITY

WETTED SURFACE

a, b =t

av

.z0- PLANE

Fig. 2 Linearized boundary conditions in physical
z-plane.



C VCO(Va)

+

C v - 0 uzVM(4~ v'a b

-A-

C -PLANE

Fig. 3 Auxiliary 9-plane.

CAVITY / -
/ \ \WETTED SURFACE

I
C V-o 01 1 v0o b

-I +1

t - PLANE

Fig. 4 Auxiliary t-plane.

--- cS

A q D.... "7 --C -7
//

j2T

/' /H F E

z -PLANE

Fig. 5 Integration contour in z-plane.



I• +ve,8

12 \-v.
- ISOLATED HYDROFOIL

II I

9

8 \

K

-750
-300- 45*

6- \ -606

5 -

4 + 45°Z !

+60l -
3

2

(re 0.25

0 0.2 0.4 0.6 0.8 1.0

ec /C

Fig. 6 Ratio of cavitation number to twice inlet angle
vs. cavity length to chord length ratio for
various stagger angles P, at a constant solidity,
0= 0.25.



13 ' ' l

12-

÷ve/ve_-

ISOLATED HYDROFOIL

10-

9

8 _
K 7- '30
- - -45

- "o-60
- -75.

6-

5-

4-

3

00
o- 0.50

0 0.2 0.4 0.6 0.8 1.0
• c/c

Fig. 7 Ratio of cavitation number to twice inlet angle
vs. cavity length to chord length ratio for
various stagger angles P, at a constant solidity,
a'= 0.50.



12

II -ve/ -

ISOLATED HYDROFOIL

t0
-75.

9

8 -i

K

6

5 -60° -

4 -2

3

2
: • - .45°

I o" 0 .75 %450

o0 0.2 0.4 0.6 0.8 1.0

Fig. 8 Ratio of cavitation number to twice inlet angle
vs. cavity length to chord length ratio for
various stagger angles P, at a constant solidity,
0'= 0.75.



12

I +yvg/ 3

ISOLATED HYDROFOIL

10

9

8 
-

K 7

7 -

6-

5S .

4 a

- • -450

2 
-

o" 1.00

60*

0 -L
0 0.2 0.4 0.6 0.8 1.0

Ic/C

Fig. 9 Ratio of cavitation number to twice inlet angle
vs. cavity length to chord length ratio for
various stagger angles A, at a constant solidity,
a,= 1. 00



12

II - vt
ISOLATED HYDROFOIL

I0

9-

8

K

6 -

1 5-

4- - 600

3
-450

2 3

I

O il I I_ t t 11-- 1t iL iiC
\ ---

S-=

06"

0 0.2 0.4 0.6 0.8 1.0

c/C

Fig. 10 Ratio of cavitation number to time inlet angle
vs. cavity length to chord length ratio for
various stagger angles P, at a constant solidity,
0y= 1.Z5.



1 3 , I i1 1 J 1l_ I I l , I 1 , -

o 0.25

I I II

10 ~-75.
S-600
I -30

9

8 _

\\
K

-72, 00.o -
*300

+6* 60
6i +75 -,6 -

II5 N'. l

4

-ve/3

2- ISOLATED HYDROFOIL

0
0 0.2 0.4 0.6 0.8 1.0

I c/C

Fig. 11 Ratio of cavitation number to twice the mean
flow angle vs. cavity length to chord length
ratio for various stagger angles P, at a
constant solidity r = 0. 25 and inlet angle of 60.



:~- 01.00
al=x 60

II -60*

10
I I _ 0I

-300

I \\

\ g, \\ \
\ "I\ I

8

K

67 IN
4

3 +~'\ 30*

++75

2 _
- ~ve f -

ISOLATED HYDROFOIL

0 0.2 0.4 0.6 0.8 1.0
AC/c

Fig. 12 Ratio of cavitation number to twice the mean
flow angle vs. cavity length to chord length
ratio for various stagger angles P, at a
constant solidity a = 1. 00 and inlet angle of 60.



12
T a 0.25

II
ý4.600

10

9

Km
-- M

6 -

4

3 --

+ve
-- -ve/3

2 ISOLATED HYDROFOIL

0 0.2 0.4 0.6 0.8 1.0

Fig. 13 Ratio of mean cavitation number to twice mean
flow angle vs. cavity length to chord length ratio
for various stagger angles P, at a constant
solidity a = 0. 25 and inlet angle of 60.



13 l

12 \ ~0",31.00-

+70
I + 60-

M 7

6

5

4 -

\-6

3

ISOLATED HYDROFOIL

0 0.2 0.4 0.6 0.8 1.0

Fig. 14 Ratio of mean cavitation number to twice mean
flow angle vs. cavity length to chord length ratio
for various stagger angles P, at a constant
solidity a = 1 . 00 and inlet angle of 60.



____ ____ ____ ___ ____ ____ ___ ____ ____ __0

li i 1 11 1 1 11 1 I II I I I~ I ~ I II ~ I!I l i 1 1 1 I II I b1 1

00 U
b0 I

" 4J

to0
CY/ 0

0 460

C0*0

In0

0..

u 1

..40

0 0

04.

0S
044

0

N~ 0



b.0 ... , 0 a N

00

0 -4 -4

00

0 044

0~ .4)

*14

to441

0 I

41(4

I~V- 4n (% -3

..4

*0

CD ~ ~ ~ In 0. 4k

0 0 0 0 0 0 0 0

N~~ 00



11,1. t fi lli I1~~* 1 1I.I I u IS T T.I I ... ~ I0 So.4

III -
00

0 01

00

0 b
020

ODI-J 0:.

0 m

00 4

.4J

.,-i .o\

Ibo

(4)

u 01

0 0
-4

00 0
00

020

0 4)

- 04



1,00 a

1 0 0

4J

.,0

*,. 0 C
00

0 v.

ob

le 4j~
0/j

0 -4

(d

4ý4J

0 0

9 ~ ~~~ 0
(7 4



00

0 o
q- 0

0

0 e

0 Q

00/

00

.4 0*

L44

0 0 0

00
0.

0 0 0 0 0 0 0 0
d ~ 0 N



00

_j -4

0I~ 00C

iii. I0 4)

5 0

Ic 0 4.

14.
ob

44.

o 0 0.

0..4 .

044W

Iq -~.4 r-

0 bo

aD CD 0.

0 t,



0
Ill II I!1 111 1111 III iil II IIII III!I fil III III p III IIII I I I I I I I . _o•- •h

0

IO-

L*J- 0

i;I fu 0 4

00
0 0 cm

0 °

0.4

-. 4 CI

IN (d,

q•.~r CIS0m
o

b o

0

00

0~

=C; 0 4 )r.

_ -1 -

0~ to

0 to)

,0 Inel

0

0 0 0 0 0 0b ý(

E0
0~~~~ 0its0 0 0 a



0

0

b 01

> 2 n

-404

00
0 0

00,O

oo4

00

0 0 5
o 0.4

~-14
(D ".4

00 I0

0 00 U

0
N-

0~

oýb

0 0 0 0 0 0 0 00

o t



(00

0

.4)
0

'+4.

-4

* * 0

0 0(0

blD



to 
0

4W.D
0 6

V 0)

t54
00

10 0

N tN

do

0 0 0

.0

0 00

0 0 0

00t

IN INo 0
0 u

00 N

o 6 o to

00
to (T.

0 i ; 0



V ~ ~ ~ ~ ~ ~ ~ I 0 _______________ ________

70

OD)

0
0

0 0

.. 4 -k

aý 4j

-~ 0

OD0 0
vt IrI

o OD E
ii0 rd

b to

w NIlX

0 .4..

(I) - -P4
04j

4l '9-

4) > .4

0 00

00
-4

INI.



6 '4

0 .0

7 CD

Is3

0

4A-

'.4 -.1

0
O D0 0 " ' U

0* 0

0
tj 0

In -In

II0 4

4.'0.4.

C"'U

0~ v6

N>
P4

0 -0

61

N 0
6~0~

00

4..

CJ4

OD rN



0,0 0

4)

4.e
o o

q* 14 - -I
"-4

0

0 0 0 C 0

C4.l

N I -- I

0

-4CD- 3 "I"

0 1

LC) 4)o 0 o 0 ,0

-f"0 0 b

0 
b

> V.

oN (13 ,

0-

0

-) 1 -" 4)

0 0 0 0 0
0 1 .dC 0.

00

0
Cto

00 0 0
N 2. 0 . . b



* 0

dT -0

4-.

C61

0i0

to0 06

IC))

40

C44

00

0 4k)

0 :> N

00
o0

0 (d4

41D~
w in E

I-0 0
oi 4..io



'I. to

0 6

IOD

0

14-

0 o"

--. 4oo U U0 005 0

oto- _

0 .,

'0

I,,

0 0 II00

ID%

v

-4

1. , 1 A l



-0 0

00

o
oI r.~

CII

u m

0 -- 0

b . 0

.. 4

6

00 0
- 0 -00

II

00 0

- , 4.

00

-4J

-- - o0

4) ".4

0 r.

~41
00

00

ZD Z 04)
CY ~ ~ U)t

(00

I, ~ ~ ~ ~ O oIImmwm.~tpi ~mp ~



4-
4)

IC))

0 0

0 L. N

4)
OD 0 0 'd

all L I . .A

0i 0

III



00

151

41

0

0 0 0 0 H. 0 0 4-'
0 o1

S0 0 CY'

41

0 0

w I

b COL
0"-4

ty 111 1J ~ ... ITI, IL ... If .. oil - l't PO (\ -N

0 0 0 0 . 0 0

0 0 0 0 0 0 0

4)4

00

tm 4

o (5 N -• - Nt 0
0 0 0

0 0 0 0 o



o 0

0

0 c*

0

4Ah

> 0 >

U 00

2S 0

0

to C

0.

ý4

OD 0

00

N

in N



00
714'

0

(0 (
11 0

-.4 -4

0~

> 0
OD Pa 6- 6('

0 00

N ;r %0
7L 0 4j

tcn a t

4)ok
b N 0

o -44'

04j

N 
0 ~ 4).

-~~ 66
4' %
N 44

4.' -4

0 00

04

04'

N



DISTRIBUTION LIST FOR UNCLASSIFIED REPORTS AND PREPRINrs ISSUED

UNDER CONTRACT Nonr (220(24) (NR 062-010)

Chief of Naval Research Chief, Bureau of Ships
Department of the Navy Department of the Navy
Washington 25, D.C. Washington 25, D.C.
Attn: Codes: Attn: Codes:

429 (1) 300 (R.A. A.M. Morgan) (1)
460 (1) 421 (Mr. J. Neidermair) (1)
438 (3) 440 (Mr. R.B. Couch) (1)

532 (1)
Commanding Officer 549 (1)
Office of Naval Research
Branch Office Chief, Bureau of Yards and Docks
The John Crerar Library Building Department of the Navy
86 East Randolph Street Washington 25, D.C.
Chicago 1, Illinois (1) Attn: Comdr. A.S. Klay, Research Div.(l)

Commanding Officer Commanding Officer and Director
Office of Naval Research David Taylor Model Basin
Branch Office Washington 7, D.C. (1)
346 Broadway
New York 13, New York (1) Commander

Naval Ordnance Laboratory
Commanding Officer White Oak, Maryland (I)
Office of Naval Research
Branch Office Commander
1030 East Green Street Naval Ordnance Test Station
Pasadena, California (1) 3202 E. Foothill Blvd.

Pasadena, California
Commanding Officer Attn: Head, Underwater Ordnance Dept.(l)
Office of Naval Research Head, Propulsion Division (1)
Navy No. 100, Fleet Post Office
New York, New York (25) Commanding Officer

Naval Underwater Ordnance Station
Director Newport, Rhode Island (1)
Naval Research Laboratory
Washington 25, D.C. Commanding Officer and Director
Attn: Code 2021 (6) U.S. Naval Engineering Experiment Station

Annapolis, Maryland (1)
Chief, Bureau of Aeronautics
Department of the Navy Superintendent
Washington 25, D.C. U.S. Naval Postgraduate School
Attn: Code Monterey, California (1)

RS-3 (Mr. F.W.S. Locke)(1)
Commanding Officer and Director

Chief, Bureau of Ordnance U.S. Naval Civil Engineering Laboratory
Department of the Navy Port Hueneme, California
Washington 25, D.C. Attn: Code L54 (1)
Attn: Codes:

ReO3 (Mr. J.D. Nicolaides) (1) Director of Research
ReUl (Mr. C.S. Sandler) (1) NASA

1512 H Street, N.W.
Washington 25, D.C. (1)



-2-

Director Mr. C.G. Morse, Chairman
Langley Aeronautical Laboratory Maritime Administration
NASA 441 G Street, N.W.
Langley Field, Virginia Washington, D. C. (1)
Attn: Mr. J.B. Parkinson,

Hydrodynamics Division (1) ASTIA
Document Service Center

Director Arlington Hall Station
Lewis Flight Propulsion Laboratory Arlington 12, Virginia (5)
NASA
21000 Brookpark Road Office of Technical Services
Cleveland 11, Ohio (1) Department of Commerce

Washington, D. C. (I)
Commander
Air Force Office of Scientific Res. Polytechnic Institute of Brooklyn

Tempo T, 14th and Constitution Department of Aeronautical Engineering
Washington 25, D.C. and Applied Mechanics
Attn: Mechanics Division (1) 99 Livingston Street

Brooklyn 2, New York
Director Attn: Professor A. Ferri (1)
Waterways Experiment Station
Box 631 Brown University
Vicksburg, Mississippi (1) Providence, Rhode Island

Attn: Division of Applied Mathematics
Beach Erosion Board Professor L.M. Milne-Thomson (1)
U.S. Army Corps of Engineers Division of Engineering
5200 Little Falls Road Professor D. Drucker (1)
Washington 26, D.C. (1)

California Institute of Technology
Office of Ordnance Research Pasadena, California
Department of the Army Attn: Dean F. Lindvall (1)
Washington 25, D.C. (1) GALCIT

Professor C.B. Millikan (1)
Office of the Chief of Engineers Professor D. Rannie (1)
Department of the Army Professor M.S. Plesset (1)
Gravelly Point
Washington 25, D.C. (1) University of California

Berkeley 4, California
Major General P.F. Yount Attn: Department of Engineering
Chief of Transportation Professor A. Schade (1)
Department of the Army Professor H. Einstein (1)
Washington 25, D.C. (1)

Carnegie Institute of Technology
Commissioner Pittsburgh, Pennsylvania
Bureau of Reclamation Attn: Dean B. Teare, Jr. (1)
Washington 25, D.C. (1) Department of Mathematics (1)

Dr. J.H. McMillen, Director Case Institute of Technology
National Science Foundation Cleveland, Ohio
1520 H. Street, N.W. Attn: Department of Mech. Engineering
Washington, D.C. (5) Professor G. Kuerti (1)

Director Colorado A and M
National Bureau of Standards Fort Collins, Colorado
Washington 25, D.C. Attn: Department of Civil Engineering
Attn: Fluid Mechanics Division Professor M. Albertson (1)

Dr. G.B. Schubauer (1)
Dr. G.H. Keulegan (1)



-3-

Columbia University University of Minnesota
Dept. of Civil Engineering and Minneapolis 14, Minnesota

Engineering Mechanics Attn: St. Anthcny Falls Hydraulic Lab.
New York, New York Professor L. Straub, Dir. (1)
Attn: Professor R. Skalak (1)

University of Notre Dame
Cornell University Notre Dame, Indiana
Ithaca, New York Attn: College of Engineering
Attn: Graduate School of Dean K. Schoenherr (1)

Aeronautical Engineering
Professor W. Sears, Dir. (1) Pennsylvania State University

University Park, Pennsylvania
Harvard University Attn: Ordnance Research Laboratory
Cambridge 38, Massachusetts Professor G. Wislicenus (1)
Attn: Department of Engineering

Sciences Rensselaer Polytechnic Institute
Professor G. Carrier (1) Troy, New York

Attn: Department of Mathematics
University of Illinois Professor R. C. DiPrima (1)
Urbana, Illinois
Attn: College of Engineering Rose Polytechnic Institute

Professor J. Robertson (1) R.R. No. 5
Terre Haute, Indiana

Iowa Institute of Hydraulic Res. Attn: Dr. W.W. Clauson (1)
State University of Iowa
Iowa City, Iowa University of Southern California
Attn: Dr. H. Rouse, Director (1) Department of Mechanical EngineeringI Los Angeles 7, California
Johns Hopkins University Attn: Professor R.C. Binder (1)
Baltimore 18, Maryland

Attn: Department of Mechanical Stanford University
Engineering Stanford, California

Professor S. Corrsin, Head (1) Attn; Department of Civil Engineering
Professor J. Vennard (1)

University of Maryland Department of Mathematics
College Park, Maryland Professor M. Schiffer, Head(l)
Attn: Institute for Fluid Mechanics Professor D. Gilbarg (1)

Professor J. Weske (1)
Stevens Institute of Technology

Massachusetts Institute of Technology 711 Hudson Street
Cambridge 39, Massachusetts Hoboken, New Jersey
Attn: Department of Naval Architecture Attn: Dr. J. Breslin (1)

and Marine Engineering
Professor L. Troost (1) University of Tennessee
Professor M. Abkowitz (1) Knoxville, Tennessee

Department of Civil Engineering Attn: Engineering Experimental
Professor A. Ippen (1) Station

Department of Mech. Engineering Dr. G. Hickox, Director (1)
Professor E.S. Taylor (1)

Western Res. University
University of Michigan Millis Science Center
Ann Arbor, Michigan Cleveland 6, Ohio
Attn: Applied Mechanics Department Attn: Professor W. Leighton, Jr. (1)

Professor R. Dodge (1)



-4-

Worcester Polytechnic Institute Republic Aviation Corporation
Worcester, Massachusetts Farmingdale, Long Island, N.Y. (I)
Attn: Alden Hydraulic Labor~atory

Professor J. Hooper, Dir. (I) EDO Corporation
Colloge Point, New York

Aerojet General Corporation Attn: Mr. S. Fenn (1)
6352 North Irwindale Averue
Azusa, California General Electric Company
Attn: Mr. J. Levy (I) Pittsfield, Massachusetts

Attn: Mr. R.H. Wahlberger (1)

General Dynamics Corporation

Convair Division Philco Corporation
3165 Pacific Highway 4700 Wissahickon Avenue
San Diego 12, California Philadelphia, Pennsylvania
Attn: Mr. H. Brooks (1) Attn: Mr. M. Arsove (1)

The Glenn L. Martin Company Vitro Corporation of America
Baltimore 3, Maryland 962 Wayne Avenue
Attn: Mr. J. Pearson (1) Silver Spring, Maryland

Attn: Mr. V. Setterholm (1)
North American Aviation, Inc.
International Airport Westinghouse Electric Corporation
Los Angeles 45, California (1) Sharon, Pennsylvania

Attn: Mr. M.E. Fagan (1)
Lockheed Aircraft Corporation

S2555 N. Hollywood Way AVCO Manufacturing Corporation
Burbank, California (1) Stamford, Connecticut (1)

Boeing Airplane Company Gibbs and Cox
Scientific Research Laboratories 21 West Street
P.O. Box 3981 New York 6, New York
Seattle 24, Washington (I) Attn: Dr. S. Hoerner (I)

Hughes Aircraft Company Bethlehem Steel Company
Florence and Teale Shipbuilding Division
Culver City, California (1) Quincy 69, Massachusetts

Attn. Mr. H. deLuce (e)
Douglas Aircraft Company, Inc.
El Segundo, California (1) General Dynamics Corporation

Electric Boat Division
Bell Aircraft Corporation Groton, Connecticut
P.O. Box No. I Attn: R.A. A.I. McKee, USN (ret.) (I)
Buffalo 5, New York (1)

International Business Machines Corp.
McDonnell Aircraft Corporation 11Z East Post Road
P.O. Box No. 516 White Plains, New York
St. Louis 3, Missouri (1) Attn: Dr. H. Cohen (1)

Chance Vought Aircraft, Inc. Dynamic Developments Corporation
P. 0. Box No. 5907 St. Marks Lane
Dallas, Texas (1) Islip, Long Island, New York

Attn: Mr. W. Carl (1)
Northrop Aircraft, Inc.
Northrop Field Miami Shipbuilding Corporation
Hawthorne, California (1) 615 S.W. Second Avenue

Miami 36, Florida
Grm-nman Aircraft Eng. Corp. Attn: Mr. P. Buhler (I)
Bethpage, Long Island, N.Y. (1)



1
Baker Manufacturing Company Hydronautics, Incorporated
Evansville, Wisconsin Pindell School Road
Attn: Mr. J. Baker (1) Howard County

Laurel, Maryland
Eastern Research Group Attn: Mr. Phillip Eisenberg (1)
215 Montague Street Mr. Marshall P. Tulin (1)
Brooklyn 1, New York
Attn: Dr. L. Meyerhoff (1) Oceanics, Incorporated

114 East 40th Street
Aircraft Gas Turbine Division New York 16, N.Y.
General Electric Company Attn: Mr. Paul Kaplan, President (1)
Cincinnati 15, Ohio
Attn: Dr. M. L. Ghai (1) Morris Machine Works

Baldwinsville, New York
Aircraft Gas Turbine Development Dept. Attn: Mr. Fred F. Antunes
Malta Test Station Hydraulic Engineer (1)
Ballston Spa, New York
Attn: Mr. Kurt Berman (1) Monsanto Chemical Company

800 N. Lindberg Blvd.
Rocketdyne St. Louis 66, Missouri
6633 Canoga Avenue Attn: Mr. R. Dean (1)
Canoga Park, California
Attn: Librarian, Dept. 596-3 (1) Professor H.G. Flynn

Department of Electrical Engineering
Technical Research Group, Inc. University of Rochester
"2, Aerial Way College of Engineering
Syosset, New York River Campus Station
Attn: Dr. J. Kotik (1) Rochester ZO, New York (1)


